Hepatitis B in HIV Patients Pt.II

Mamta K. Jain, M.D., M.P.H.
UT Southwestern Medical Center
Prevention of Hepatitis B
Comparison of Standard vs. Double Dose or recombinant HBV vaccine

<table>
<thead>
<tr>
<th>dose</th>
<th>Number</th>
<th>schedule</th>
<th>Anti-Hbs >10mIU/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 µg</td>
<td>94</td>
<td>0,1,6 months</td>
<td>34%</td>
</tr>
<tr>
<td>40 µg</td>
<td>98</td>
<td>0, 1, 6 months</td>
<td>47%</td>
</tr>
</tbody>
</table>

*Those with CD4 >350 cells/µL had significantly higher rates of response (64% vs. 39%, p=0.01)

**No difference occurred in those with CD4 <350 cells/µL

Fonseca *Vaccine* 2005; 23: 2902-2908
HBV Vaccine Response in HIV patients

<table>
<thead>
<tr>
<th>Intervention CD4 >200</th>
<th>Dose</th>
<th>Schedule</th>
<th>route</th>
<th>Response at 28 weeks; Response (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>recombinant vaccine A (n=145)</td>
<td>20μg</td>
<td>0, 4, 24 weeks</td>
<td>IM</td>
<td>65% (56-72%)</td>
</tr>
<tr>
<td>recombinant vaccine B (n=148)</td>
<td>40μg</td>
<td>0, 4, 8, 24 weeks</td>
<td>IM</td>
<td>82% (77-88%)*</td>
</tr>
<tr>
<td>recombinant vaccine C (n=144)</td>
<td>4μg</td>
<td>0, 4, 8, 24 weeks</td>
<td>interdermal</td>
<td>77% (69-84%)**</td>
</tr>
</tbody>
</table>

* p<.001 (A vs B)
** p=0.02 (A vs. C)

Launay JAMA 2011; 305: 1432-1440
New HBV Vaccination Guidelines

- All immunosuppressed patients
 - HBV vaccine 40 mcg
 - 3 doses at 0, 1, and 6 months (Recombivax)
 - Or 4 doses of 40 mcg at 0, 1, 2, and 6 months (Engerix-B)
 - Check anti-HBs 1 month after completion of series
Vaccination Against Anti-HBc Ab

- 54 patients
- Given 1 dose 20μg of recombinant HBV vaccine
 - Those with anti-HBS <10mIU/ml at 4 weeks received 3 additional double dose (40 μg at 5, 9, 24 weeks)
- At wk 4, 46% were responders
- Non-responders at wk 4 who received further vaccination:
 - 89% had anti-HBS≥10mIU/mL at 28 weeks

Piroth *J Infect Dis* 2016;213:1735-42
Strategies to Increase HBV Vaccination Response

- reduction in HIV viral load
- Increase in CD4 cell count
- Make sure pts receive 3 or more doses
- Re-vaccinate those who are initial non-responders to vaccination series
 - No trials to show that double dose increases response rates in prior non-responders

Whitaker *Lancet Infect Dis* 2012; 12:966-976
Okulicz *Plos One* 2014; 9: e105591
<table>
<thead>
<tr>
<th>Variable</th>
<th>All</th>
<th>HIV-Infected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IRR (95% CI)</td>
<td>P Value</td>
</tr>
<tr>
<td>Age <40 vs. ≥40 y</td>
<td>2.3 (1.7-3.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonwhite</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>1.3 (0.9-1.8)</td>
<td>0.140</td>
</tr>
<tr>
<td>Multiple vs. 0-1 sexual partners in previous 6 mo</td>
<td>3.1 (2.3-4.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ever IDU vs. never IDU</td>
<td>1.7 (1.0-2.7)</td>
<td>0.040</td>
</tr>
<tr>
<td>≥1 dose vs. no doses of HBV vaccine</td>
<td>0.3 (0.2-0.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>HIV infected vs. uninfected</td>
<td>2.4 (1.8-3.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>CD4 cell count <0.350 vs. ≥0.350 × 10^9 cells/L</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>Antiretroviral use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No HAART</td>
<td>Not tested</td>
<td></td>
</tr>
<tr>
<td>HAART</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV RNA level ≥400 copies/mL</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>HIV RNA level <400 copies/mL</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

HAART = highly active antiretroviral therapy; HBV = hepatitis B virus; IDU = injection drug use; IRR = incidence rate ratio; NA = not applicable.

Model also adjusted for Multicenter AIDS Cohort Study site. All covariates except race and Multicenter AIDS Cohort Study site were used as time-varying covariates in the model. P values for all participants from negative binomial regression models to assess for overdispersion = 0.24; those for HIV-infected participants = 0.49.

Incident Hepatitis B Virus Infection in HIV-Infected and HIV-Uninfected Men Who Have Sex With Men From Pre-HAART to HAART Periods

A Cohort Study

HBV active ART To Prevent Incident HBV

Hazard ratios (HRs) of the different factors influencing hepatitis B virus (HBV) incidence.

Treatment of HBV
FDA-Approved HBV Therapies

1990 - Interferon alfa-2b
1998 - Lamivudine
2002 - Peginterferon alfa-2a
2005 - Entecavir
2006 - Tenofovir
2008 - Telbivudine
Goals of Treatment

- HBV DNA suppression
 - Decreased risk of HCC
 - Decreased progression to ESLD
- HBeAg+: HBeAg seroconversion
- HBeAg-: HBsAg loss
- HBsAg loss (ultimate goal)
HBV Treatment: Interferon

- Long term follow up limited
- Delayed clearance of HBsAg: 12-65% within 5 yrs
 - Lower incidence of HCC and higher survival rate
- HBeAg-: 20% cleared HBsAg in 5 yr f/u
 - Reduced risk HCC and liver deaths
HBV/HIV: YMDD Resistance

<table>
<thead>
<tr>
<th>Author, yr</th>
<th>Resistance</th>
<th>Time Interval</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pillay, 2000</td>
<td>14%</td>
<td>Est. 1 yr</td>
<td>CAESAR sub-analysis</td>
</tr>
<tr>
<td>Benhamou, 1999</td>
<td>50%; Annual incidence of 20%</td>
<td>After 2 years</td>
<td>Resistance only in HBeAg carriers</td>
</tr>
</tbody>
</table>
Treatment of HBV in HIV-Infected

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Log Reduction</th>
<th>HBeAg Seronversion</th>
<th>Resistance (YMDD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamivudine</td>
<td>2.7 log</td>
<td>22-29%</td>
<td>14-38% at 1 yr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50% at 2 yr</td>
</tr>
<tr>
<td>Tenofovir</td>
<td>3-5 log</td>
<td>25%</td>
<td>Active against YMDD; 1 reported case</td>
</tr>
<tr>
<td>Emtricitabine</td>
<td>2.92 log*</td>
<td>33%*</td>
<td>9% at 48 weeks*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18% at 96 weeks*</td>
</tr>
</tbody>
</table>

* Data not available in HIV/HBV

Combination pills: Combivir (lamivudine and zidovudine)
Trizivir (lamivudine, abacavir, and zidovudine)
Truvada (tenofovir and emtricitabine)
Atripla (efavirenz, tenofovir, and emtricitabine)

Gish. *Arch Int Med* 2006;166:49-56
Complications During Therapy
Acute Flares in Chronic HBV

- Spontaneous reactivation of chronic HBV
- Reactivated hepatitis due to immunosuppressive medications
 - Cancer chemotherapy
 - Antirejection drugs
 - Corticosteroids
- Resulting from antiviral therapy
 - Interferon
 - Nucleoside analogues
 - Corticosteroid withdrawal

- Induced by HBV genotypic variation
 - Precore mutant
 - Core promoter mutant
 - HBV DNA polymerase mutant

- Due to superimposed infection with other hepatotropic viruses
 - Hepatitis A,C,delta viruses

- Caused by interaction with HIV infection
 - Reactivated hepatitis
 - Effect of immune reconstitution therapy

Perrillo Gastroenterology 2001
Acute Flare

- Withdrawal of HBV treatment
- Never stop lamivudine/emtricitabine/tenofovir in pt with HBV if you are changing HIV regimen due to HIV resistance.
Hepatitis B IRIS

ALT (I/U)

CD4 Count

0 100 200 300 400 500 600 700 800

0 100 200 300 400 500 600 700 800

baseline 1mo 2mo 3mo 5mo

Jain et al., AIDS Patient Care & STDs, 2006
Drug-Induced Hepatotoxicity
- ALT increase
- 3-12 weeks after initiation of meds
- High likelihood for hepatotoxicity i.e. Nevarapine
- Hep B core IgM negative
- HBe Ag serconversion not seen
- Rash and fever may be seen

Immune Reconstitution/HBV flare
- Increase in CD4
- Decrease in HIV VL
- ALT increase
- 6-12 weeks after initiation of meds
- Hep B core IgM often positive
- HBeAg seroconversion may be seen during or following flare
Mutations

- HBeAg-negative variants occur naturally (HBV DNA +)
 - Precore stop codon G1896A
 - Basal core promoter A1762T/G1764A
- Mutations abolish or decrease HBeAg production
Entecavir Activity Against HIV

On entecavir

Wild type HIV

M184V HIV

Jain and Zoellner AIDS, 2007
Resistance

Nucleos(t)ide therapy and potential mutations in RT polymerase gene

<table>
<thead>
<tr>
<th>Drug</th>
<th>RT Polymerase mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>lamivudine, telbivudine, emtricitabine</td>
<td>rtM204V/I+rtL180M; rtV173L</td>
</tr>
<tr>
<td>adefovir</td>
<td>rtA181V; rtN236T</td>
</tr>
<tr>
<td>entecavir</td>
<td>rtM204V+rt180M plus rt184A/C/F/G/I/L/M/S or rtS202C/G/I or rtM250V/L</td>
</tr>
<tr>
<td></td>
<td>rtM204I plus rt184I/S or rtM250I/L</td>
</tr>
</tbody>
</table>
Monitoring During HBV Treatment
Evaluation of HBV

- We asked how well do HIV providers evaluate and monitor HBV in HIV/HBV patients?
- To evaluate response to HBV therapy, measurement of HBV DNA is needed at baseline and then during therapy.
Baseline Characteristics (n=155)

<table>
<thead>
<tr>
<th></th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4 (cells/μL), median [range]</td>
<td>137 [1-1089]</td>
</tr>
<tr>
<td>CD4<200 cells/μL</td>
<td>90 (58)</td>
</tr>
<tr>
<td>Log HIV viral load (copies/mL), median [range]</td>
<td>4.81 [1.69-6.11]</td>
</tr>
<tr>
<td>ALT (IU/L) , median [range]</td>
<td>34 [6-481]</td>
</tr>
<tr>
<td>AST (IU/L), median [range]</td>
<td>37 [13-389]</td>
</tr>
</tbody>
</table>

Active HBV Therapy

<table>
<thead>
<tr>
<th>HBV Therapy</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any active HBV therapy</td>
<td>142 (92)</td>
</tr>
<tr>
<td>Lamivudine</td>
<td>137 (88)</td>
</tr>
<tr>
<td>Tenofovir</td>
<td>18 (12)</td>
</tr>
<tr>
<td>Emtricitabine</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Adefovir</td>
<td>1 (<1)</td>
</tr>
</tbody>
</table>

Monitoring of HBV in HIV/HBV Patients

- Testing for HBV or HIV prior to starting HAART
 - HIV RNA prior to HAART 99%
 - HBV DNA prior to HAART 16%

- Monitoring of HIV and HBV during the first year of HAART
 - HIV RNA 1st year of Rx 497 (median 3/pt)
 - HBV DNA 1st year of Rx 85 (median <1/pt)

HBV Tests: HBV DNA or HBeAg/anti-HBe
HIV Tests: HIV RNA

HIV vs. HBV Kinetics

- HIV viral load becomes undetectable in 2-8 weeks
- HBV viral load may take >6 months
 - Much higher baseline HBV DNA level
Management of Hepatitis B

- HIV/HBSAg+ to begin ART:
 - Hepatitis B DNA
 - quantify HBV viral load prior to initiation of ART
 - Hepatitis B e Antigen
 - indicates ongoing viral replication and can be used as a marker of active disease
 - Hepatitis B e Antibody
 - will become positive when patient has seroconverted
 - Ultrasound of liver
 - Cirrhosis and HCC
 - Consider Liver biopsy to stage disease
Management of HBV

- Confirm HBV viremia

- Start HAART
 - Truvada should be used as back-bone
 - If tenofovir can not be used then entecavir should be added to ART regimen

- Stage Liver Disease
 - US
 - Fibroscan
 - Liver biopsy
 - Fibrasure/APRI/FIB-4
Management of HBV

- Monitor HBV DNA
 - Every 3-4 months
 - Once HBV DNA suppressed
 - Check HBeAg to determine if seroconversion has occurred

- Monitor for HCC
 - Ultrasound and AFP yearly
 - If cirrhotic then every 6 months
Special Request

- Longitudinal study of HIV/HBV
 - Via HIV/HBV Research Network

- Please refer all HIV/HBV patients to this study
 - Staging of liver disease
 - Liver disease progression monitored